

Informationstechnologien im Wald I

Bachelor SÖW

Sommersemester 2025

Dr. Evelyn Wallor

Inhalt

- Beispiele zum Thema Lies & Statistics
- Kurze Wiederholung
- Deskriptive Statistik: Lage- und Streuparameter
- Box-and-Whisker Plot

→ Plausibilität

"In the thirty-five years since marijuana laws stopped being enforced in California, the number of marijuana smokers has doubled every year."

Beispiel aus Levitin, D. (2016)

→ Plausibilität

"In the thirty-five years since marijuana laws stopped being enforced in California, the number of marijuana smokers has doubled every year."

Endwert = Anfangswert * 2^{Anzahl der Jahre}

Beispiel aus Levitin, D. (2016)

→ Behauptungen

Titel: Junge Frauen sind oft gebildeter als junge Männer

- Im Abgangsjahr 2023 waren von den 259.200 Personen mit Abitur 55% Frauen.
- 53% der insgesamt 501.900 Hochschulabschlüsse im Prüfungsjahr 2023 entfielen auf Frauen.
- 66% der endgültig nicht bestandenen Pr
 üfungen wurden 2023 von m
 ännlichen Studenten abgelegt.
- Männer sind durchschnittlich etwas älter beim Abschluss ihres Erststudiums, nämlich 23,9 Jahre (Frauen: 23,4 Jahre).

tagesschau.de (03.04.2025)

→ Visualisierung

Beispiel aus Levitin, D. (2016): Fox News (2010), eigene Darstellung

→ Visualisierung

eigene Darstellung

→ Visualisierung

berichtigt, eigene Darstellung

→ Visualisierung

Zunahme der Crime Reports

→ Visualisierung

→ Mittelwerte

Kurze Wiederholung

\rightarrow Beispiel Durchmesser d_{1,3}

Klasse	Durch- messer Intervall	Absolute Häufigkeit n _i	Relative Häufigkeit h _i	Summen- Häufigkeit N _k [absolut]	Summen- Häufigkeit H _k [relative]
1	10 ≤ x < 15	1	0,083	1	0,083
2	15 ≤ x < 20	6	0,500	7	0,583
3	20 ≤ x < 25	4	0,333	11	0,91ē
4	25 ≤ x < 30	0	0,000	11	0,91ē
5	30 ≤ x < 35	1	0,083	12	1
	Summe	12	1.0		

→ Häufigkeitsverteilung

Faculty of Forest and Environment - Environmental Data Analyis - Dr. Evelyn Wallor

Durchmesser[cm]

Verteilungsfunktionen

→ Empirisch vs. theoretisch

 $\frac{\text{Theorie}}{(\text{Wissen})}$ z.B. Normalverteilung $N(\mu, \sigma^2)$

Lage- und Streuparameter

→ Statistische Kennwerte (deskriptiv)

Lageparameter

Def.

... beschreiben den Schwerpunkt oder zentrale Tendenz der Messwerte im Wertebereich der Stichprobe.

z.B.

- arithmetischer Mittelwert (metrisch)
- Modalwert oder Modus (alle Skalen)
- Median (metrisch/ordinal)

Streuparameter

... beschreiben die Variabilität der Messwerte um den jeweiligen Lageparameter.

z.B.

- Varianz und Standardabweichung (metrisch)
- Interquartilsabstand (metrisch/ordinal)

Def.

→ Statistische Kennwerte (deskriptiv)

→ Lageparameter

Den **arithmetischen Mittelwert** definieren wir mit der nachfolgenden Formel:

$$\bar{x} = \frac{1}{n} * \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Der **Modalwert** (Modus) x_{mod} ist die Merkmalsausprägung, die in der Urliste am häufigsten vorkommt.

Der **Median** x_{med} – manchmal auch Zentralwert oder 50%-Quantil genannt – ist der mittlere Wert einer sortierten Liste. In Abhängigkeit vom Stichprobenumfang müssen folgende Fälle beachtet werden:

$$x_{med} = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & f \ddot{u}r \, ungerade \, Stichprobenum f \ddot{a}nge \\ \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right) & f \ddot{u}r \, gerade \, Stichprobenum f \ddot{a}nge \end{cases}$$

→ Lageparameter (Verteilungsmuster)

→ Lageparameter (Quantile)

Als **Quantil x**_p bezeichnet man den Wert, der eine aufsteigend geordnete Liste von *n* Beobachtungen ungefähr im Verhältnis p zu (1-p) teilt. Der Wert für ein beliebiges Quantil liegt im Intervall [0,1].

→ Lageparameter (Quantile)

Als **Quantil x**_p bezeichnet man den Wert, der eine aufsteigend geordnete Liste von *n* Beobachtungen ungefähr im Verhältnis p zu (1-p) teilt. Der Wert für ein beliebiges Quantil liegt im Intervall [0,1].

→ Lageparameter (Quantile)

Als **Quantil x**_p bezeichnet man den Wert, der eine aufsteigend geordnete Liste von *n* Beobachtungen ungefähr im Verhältnis p zu (1-p) teilt. Der Wert für ein beliebiges Quantil liegt im Intervall [0,1].

→ Lageparameter (Quantile)

Quantile:

Hierbei handelt es sich um eine beliebige Aufteilung der Stichprobe in zwei Teile (p und 1-p) \rightarrow z.B. $x_{0,95}$; $x_{0,99}$

Quartile:

Ein Spezialfall der Quantile, bei dem die Stichprobe in vier gleich große Bereiche geteilt wird $\rightarrow x_{0,25}$; $x_{0.50}$; $x_{0,75}$

Quintile:

Aufteilung in 20%-Bereiche $\rightarrow x_{0,20}$; $x_{0,40}$; $x_{0,60}$; $x_{0,80}$

Dezile:

Aufteilung in 10%-Bereiche $\rightarrow x_{0,10}$; $x_{0,20}$; ...; $x_{0,90}$

→ Lageparameter (Quantile)

Berechnung der **Quantile x**_p

 $x_{p} = \begin{cases} x_{(k)} & \text{für } k \text{ als nächste ganze Zahl nach } n \cdot p \\ \frac{1}{2} (x_{(k)} + x_{(k+1)}) & \text{falls } k = n \cdot p \text{ eine ganze Zahl ist} \end{cases}$

Beispiel:

 $\{15,8; 18,3; 19,3; 19,9; 20,9; 22,8\}^1$

gesucht: $x_{0,5}$ $n \cdot p = 6 \cdot 0,5 = 3$ — ganze Zahl (2. Fall)

$$x_{0,5} = 1/2(x_3 + x_{3+1}) = 1/2(19,3 + 19,9) = 19,6$$

¹Für derartig kleine Stichproben ist die Berechnung mancher empirischer Quantile nicht sinnvoll!

→ Lageparameter (Quantile)

Box-Whisker-Plot (kurz: Boxplot): Hierbei handelt es sich um eine eindimensionale Darstellung der Häufigkeitsverteilung.

 \rightarrow Interquartilsabstand (IQR) = $x_{0,75} - x_{0,25}$

→ Streuungsparameter (nicht im Box-and-Whisker Plot)

Die **Varianz** (Stichproben-Varianz) ist eine Kennzahl zur Beschreibung der Streuung der Daten. Sie wird mit der nachfolgenden Formel berechnet: $n = \frac{n}{1 - \frac{n}{2}}$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n-1} (x_{i} - \bar{x})^{2}$$

Die **Standardabweichung** ist die Wurzel aus der Varianz:

$$s = \sqrt{s^2}$$

→ Streuungsparameter (im Box-and-Whisker Plot)

Der Interquartilsabstand (IQR) bezeichnet Spannweite zwischen dem 1. und 3. Quartil:

 $IQR = x_{0,75} - x_{0,25}$

Die **Spannweite** (Range) bezeichnet den Abstand zwischen Minimum und Maximum:

 $R = x_{max} - x_{min}$

→ Deskriptive Parameter im Box-Whisker-Plot

→ Deskriptive Parameter im Box-Whisker-Plot

Interpretiere!

Danke für die Aufmerksamkeit.