Outline of the three lessons

- Introduction
- Climate drivers and processes
- Climate and live
- Observed climate change and impacts

Outline of the three lessons

- Introduction
- Climate drivers and processes
- Climate and live
- Observed climate change and impacts

Alexander v. Humboldt and the discovery of climate zones

https://de.wikipedia.org/wiki/Datei:
Alexandre_humboldt.jpg

1802: Volcano **Chimborazo**

(Ecuador, 6267 m)

Climate zones as habitat of different ecosystems

- northern) is the vegetation zone in which trees can still grow despite cold temperatures. The boreal coniferous forest belt stretches practically across the entire northern hemisphere, around the 60th parallel.
- Spruces, pines, firs and larches are generally the dominant coniferous species in boreal climates. Mostly conifers.
- Low precipitation, permafrost, mean temperatures around +5 to -5 C, with significant upward and downward deviations (-30 C in the winter months; up to +20 C in the summer months).

Characteristics of **tropical rainforests**:

- 1. located near the equator,
- 2. high temperatures,
- 3. daily precipitation,
- 4. evergreen vegetation,
- 5. high species diversity.
- In the tropical rainforest there are no seasons. A diurnal climate prevails (opposite: seasonal climate).
- Mostly broadleave trees.

Outline of the three lessons

- Introduction
- Climate drivers and processes
- Climate and live
- Observed climate change and impacts

Changes in global surface temperature relative to 1850–1900 (a) Change in global surface temperature (decadal average) (b) Change in global surface temperature (annual average) as observed and as reconstructed (1-2000) and observed (1850-2020) simulated using human & natural and only natural factors (both 1850-2020) °C °C 2.0 2.0 Warming is unprecedented in more than 2000 years 1.5 1.5 Warmest multi-century observed period in more than simulated 100,000 years 1.0 1.0 human & natural observed 0.5 0.5 - 0.2 simulated natural only 0.0 (solar & volcanic) -0.5-0.5500 1000 1850 2020 1850 1900 1950 2020 2000

Scenarios: from emissions to temperatures

Business-as-usual in red

Climate tipping points

Risks at the horizon

© PIK

- Humans are a geological force
- Crucial parts of the climate system are at risk of tipping even within the Paris range of 1.5 – 2°C

Coral reefs perish

Already 2°C is too much

Number of bleach events

Arctic sea ice 1979

Arctic sea ice 2017

Number of events worldwide (Munich Re NatCat)

People at risk because of climate change

Intergovernmental Panel on Climate Change (IPCC):

- at least 3.3 billion people's daily lives are "highly vulnerable" to climate change,
- and people are 15 times more likely to die from extreme weather than in years past, the report said.

Food production

Multiple impacts of climate change on food production

Increase of intense precipitation with temperature

(15min precipitation, 99.9% Quantile, Brixenbachtal, Längental, Ruggbachtal)

Trend in absolute air humidity

Red: decrease, blue: increase < -0.2g, 0.0%, >0.2g pro 30y

Trend in relative air humidity

Trends in relative and absolute humidity in Europe

How extreme are extremes?

DWD: "Deluge at the Mediterranean Sea":

- "... Once connected, this low off Norway was able to pump more and more humidity from hurricane
 "SAM" across the Atlantic, a so-called atmospheric flow. With a newly formed trough on the Atlantic, this flow moved visibly southwards, so that the moisture could reach the Mediterranean. ..."
- E.g. in Villefort: 459 l/m² within 24 hours, of which 251 l/m² within 6 hours.
- The record is probably held by the station in Rossiglione with a breathtaking 848 l/m² in 24 hours

 a value beyond any other usual scale. 700 l/m² of this fell within 12 hours.
- Other stations on the eastern edge of the Massif Central recorded precipitation totals of well over 100 l/m² in 24 hours.

Atmosphärisches Feuchteflussband im Modell ICON von Hurrikan "SAM" Richtung Mittelmeerraum und Zentraleuropa am 3./4.10.2021

24-stündige Niederschlagssumme vom 3.10.2021 am Zentralmassiv mit 459 l/m² in der Spitze und verbreiteter über 100 l/m².

The future reoccurrence of the historical 1000-year flood

RCP4.5, 2020-2049

Climate change impacts on flood damages

Climate change impact on erosion

Possibly more erosion because:

- Heavier precipitation;
- Droughts destroy vegetation cover;
- More wind erosion;

Heat impacts on health and productivity

To evaluate the impact of increased WBGT on/in:

- Activity level –labour capacity subsistence farmers*
- At low and moderate altitude
- During different seasons
- Working indoor and outdoor
- **Men** and women (*N = 120; 2x30 Nouna, 2x30 Siaya)

Linking climate impact

Percent of full working capacity with changing WBGT and different workloads

Development of WBGT under climate change

Storms

Cyclons

Forest fires

Impacts of forest fires in the Upper Amazon

, GRACE data

Natural an burned forest areas: Leaf area index LAI (MODIS satellite data)

- Strong and permanent decrease of vegetation cover
- Highly variable annual course of vegetation cover
- Agriculture?

Consequences of wildfire on the local water balance –

Parametrization of SWIM

Estimation of runoff parametrization following forest fires By Konstantinos X. Soulis, DOI: 10.1080/02626667.2018.1501482

- Leaf area index: Aus MODIS Satellitendaten.
- Verbrannte Fläche: Aus Satellitendaten
- Geänderte
 Bodeneigenschaften: Aus
 Konstantinos 2018 (rechts).

Figure 3. Produced total direct runoff depth *vs* total rainfall depth for the 29 pre-fire and 60 post-fire storm events used in this study. The post-fire events are divided into three chronological sub-groups.

Figure 4. Calculated CN values using Equation (3) for the standard case of $\lambda=0.2$ plotted against the total rainfall depth for the pre-fire and post-fire periods. The post-fire events are divided into three chronological sub-groups.

SWIM: Water cycle before and after fire

SWIM: Water cycle before and after fire

Fred Hattermann

Vulnerable regions

How should a landscape look like / be composed to be climate resilient and still providing basic ecosystem services such as water, food and protection?

-> climate landscapes?

Energy – Water – Carbon

Source. Bonan et al. 2008

Thermal photo (Landsat, August)

UN sustainable development goals

